Area: SOCIAL SCIENCE
Date: 10/12/2011
College: Social and Behavioral Science
Department: Psychology
Catalog Abbreviation: PSY
Catalog Title: Introductory Psychology
Course Number: 1010
Credit Hours: 3
Substantive:
New:
Revised:
Renewal: x
Effective Date: 7/1/2012
Current Catalog Description
Introduction to the scientific study of human behavior.
SOCIAL SCIENCE GENERAL EDUCATION MISSION STATEMENT

The mission of the Social Science general education area is twofold: 1. to provide students with a basic understanding of humans and their behavior within their environments; and 2. to assist students in their efforts to contribute to society in their particular professions and as responsible citizens of their various communities.

SOCIAL SCIENCE LEARNING OUTCOMES

All courses proposed for inclusion in the social science breadth category must address at least two of the skill criteria listed below. (Mark all that apply.)

___ Written, oral, or graphic communication
__x_ Abstract logic or reasoning
____ Use of information technology
____ Use of library or other research sources
__x_ Critical thinking, cognitive learning, and individual or group problem solving
____ Collaborative group problem solving

Justification: The challenge for students in any psychology class is that they must learn about the discipline despite holding misconceptions about both its contents and methods. Helping students overcome these misconceptions is one of the central challenges of General Education in psychology.

A central goal of Introductory Psychology is for students to learn to think as scientists about human nature, which is the overarching topic of the course. To think as scientists about human nature means that students’ claims about mind and behavior are tested not by personal intuitions, unique experiences, or self-reflection, but by an abstract logic or reasoning process. Students in Introductory Psychology classes learn the hypothetico-deductive model of scientific reasoning (Braithwaite, 1953), which requires hypothesizing effects based on theories of human nature and assessing those hypotheses against results of studies designed to test them. Students learn the component skills in scientific reasoning about human nature during opening lectures and chapters which highlight processes of generating hypotheses (e.g., deduction from theories), designing research studies (e.g., distinguishing case, correlational, and experimental studies), and interpreting the results of the studies (learning to make descriptive and inferential statistical inferences). Skills for critically evaluating the limits of any given study (e.g., concepts of internal and external validity) are also reviewed so that students appreciate science as a process of puzzling over patterns of results from multiple studies. In each chapter of an introductory textbook, students learn how the hypothetico-deductive model of scientific reasoning is used to test claims about different aspects of human nature. For example, various chapters emphasize scientific evidence of the power of biological factors (e.g., neurotransmitters and genetic heritage), social factors (e.g., social norms and roles and family environment), and psychological factors (e.g., cognitive processes and personality) on behavior. The results from tests of the interactions between these factors also are
addressed when discussing a range of other psychological phenomena including human development, motivation, emotions, psychopathology, and therapy.

Another central goal of the Introductory Psychology class is for students to overcome misconceptions they have about human nature that are based on their personal intuitions, unique experiences, or self-reflection and replace them with findings based on the science of the discipline. For students to revise misconceptions they must engage in critical thinking cognitive learning, and individual or group problem solving. Critical thinking involves systematically and unbiasedly reflecting on the support for claims about human nature based on students’ prior beliefs (e.g., intuition, experience, or reflection) and scientific psychology (e.g., research evidence). Problem solving entails comparing and contrasting the legitimacy of the support to identify the most or best supported claims. Cognitive learning involves monitoring not only that better supported scientific psychological claims are accepted into the students’ network of beliefs about human nature but also that more weakly supported prior beliefs are rejected from the network. For example, students revise beliefs regarding how perception of the physical world is direct (naïve realism) in light of scientific evidence supporting a representational theory of perception. Similarly, students reassess their personal intuitions about depression as a failure of will as they learn the biological, cognitive, and social processes underlying the psychopathological condition.

A student completing a social science general education course should be able to accomplish three of the following five outcomes. (Mark all that apply.)

___x___ Describe a social science approach to studying and understanding human behavior.
___x___ Describe basic assumptions about humans and their behaviors from a social science perspective.
____ Explain the basic elements and operation of a sociocultural system.
___x___ Explain the interactions between individuals and their sociocultural and/or natural environments.
____ Apply a social science perspective to a particular issue and identify factors impacting change (past or present).

Justification:

Overall, students in Introductory Psychology are trained in scientific psychology as a social science approach to studying and understanding human behavior. As noted, scientific psychology is distinct from students’ spontaneous ways of studying and understanding human behavior which is based on intuition, experience, and reflection. Introductory Psychology students learn that scientific psychology assumes that claims about mind and behavior must be empirically tested through a hypothetico-deductive process of scientific reasoning.

Students also learn that the scientific psychology is not monolithic, but rather includes a range of approaches which share the scientific orientation to studying and understanding human behavior. These include the Biological Approach (physiology, behavioral genetics, and evolutionary
processes), Behaviorist Approach (conditioning, learning, and modeling), Cognitive Approach (attention, memory, and reasoning), Psychodynamic Approach (psychoanalysis, ego psychology, and other approaches), Socio-Cultural (being socialized into and internalizing the beliefs, attitudes, practices, norms, and roles of a culture) and the Humanistic Approach (study of self and subjective experiences). The approaches reflect well developed paradigms in psychology with distinct assumptions about the mind and behavior.

As noted above, the general assumptions of scientific psychology as a social science approach to studying and understanding human behavior is presented in lectures and textbook chapters covered early in the semester. Among other details, these chapters emphasize basic assumptions about humans and their behaviors when they are conceived of as a topic of scientific investigation (an insight which did not occur until the 19th Century). That is, accepting a science of mind and behavior comes with important assumptions about human nature, which must also be part of the training of Introductory Psychology students. These assumptions include the adoption of working assumptions of the deterministic and materialist nature of mind and behaviors which are open to experimental manipulation and control. These assumptions have been characterized as working in the sense that students must at least temporarily adopt these positions to fully appreciate the meaning and value of the results generated by scientific psychological research (e.g., its soundness, generalization, and application) (Amsel et al., 2009, 2011; submitted).

Additionally, assumptions about the specific approaches in scientific psychology are the topic of lectures and are presented in various textbook chapters (e.g., the Behaviorist Approach is highlighted in the Learning chapter, the Cognitive Approach is highlighted in the Memory and Thinking chapter, and Neuroscience in the Biopsychology and perhaps the Gene-Environment chapters). In these lectures and chapters, the distinct assumptions underlying each approach in psychology about human nature and behaviors are highlighted. For example, the form of explanation adopted in each approach is examined to reveal its assumption of about the design or function of human behavior (e.g., Behaviorism assumes that people are designed to learn from experience and Cognitivism holds that people are designed to process information, etc.). Furthermore, students learn that some of these approaches propose different accounts of the causes of psychopathology and offer different insights about the process of therapy.

Finally, the Introductory Psychology class emphasizes the scientific account of interactions between individuals and their sociocultural and/or natural environments. Generally, these interactions are explained in scientific psychology by complex relations between the biological, psychological, and social forces operating on individuals. The scientific psychological account of aggression is presented as a complex interaction between biological (hormonal levels and emotional activation), psychological (failure of regulatory and inhibitory processes), and socio-cultural contextual (social norms and roles) factors. Similarly, perceptual processes are presented as the product of relations between social context, individual’s past experiences and expectations, and activation of various sensory pathways to generate meaningful experiences. In each case, these complex relations between multiple interacting forces is a more sophisticated account of
phenomena than students’ own simplistic explanations which cite the operation of single variables or additive (not interactive) multiple variables.

COMPLETE THE FOLLOWING

1. Has this proposal been discussed with and approved by the department?

 Yes

2. List those general education courses in other departments with similar subject matter and explain how this course differs.

 While other general education classes across the university may explore aspects of human nature covered in Introductory Psychology (including CFS 1500, SW 2100, and NEURO 2050) none has as its goal the training of students in scientific psychology as an approach to the study of human nature.

3. If the proposed new general education course affects course requirements or enrollments in other departments, list the departments and programs involved and attach comments from each.

 This is not a new course.

4. Attach a course syllabus. Include the number of contact hours per week and the format of these hours (e.g., lecture, lab, field trip, etc.).

 The course has 150 minutes of contact per week in a lecture format.

New Courses Only:

5. Discuss how you will assess student learning outcomes associated with this course

Current General Education Courses and Existing Courses Seeking General Education Status:

6. Discuss how you have assessed the applicable or identified student learning outcomes associated with this course.

Introductory Psychology, like every class in the psychology curriculum, has department learning outcome goals of students systematically acquiring, effectively applying, and appropriately communicating their knowledge, values, and beliefs of scientific psychology. As one scholar put it, “The fundamental goal of education in psychology, which all others follow, is to teach students to think as scientists about behavior” (Brewer, 1993, p. 163).
As General Education courses in Psychology are often the first opportunity to help students think as scientific psychologists, there is no strong expectation that students will fully realize or completely accept what this encompasses. Our assessment of learning outcomes in Introductory Psychology bears this out. Our assessments of student learning outcomes in Introductory Psychology performed over the past 6 years has found small but notable steps that students take in the direction of being scientists about behavior due to their experience in Introductory Psychology. Below, we review evidence of Introductory Psychology achieving each of the 5 student learning outcomes identified in the justification.

1. Abstract logic or reasoning process

The first general education learning outcome we assessed was students’ abstract logic or reasoning process. In a 2011 assessment of summer Introductory Psychology, students explored their use of and improvement in these skills during the course. As expected, they reported using abstract logic or reasoning skills in their Introductory Psychology fairly regularly (Mean = 3.74 on a 5-point scale labeled (1) never, (2) infrequently, (3) regularly, (4) often, and (5) frequently). They also perceive themselves as having moderately to substantially improved in their skills (Mean = 3.42 on a 5-point scale labeled (1) none, (2) a little, (3) moderately, (4) substantially, and (5) extensively). Moreover, there was a strong positive correlation between ratings of the use of the skills and the improvement of them in the course ($r = .60, p < .001$). The self-ratings data reflect students’ perception that they are indeed learning much more than just the content of psychology in their Introductory Psychology course, but also perceive a link between exercising and improving in their abstract logic and reasoning skills in the course.

Evidence that students were justified in their perceptions of fairly moderate growth in their abstract logic and reasoning skills that can be attributed directly to their class was addressed in a 2006-2007 assessment of Introductory Psychology students. At that time, 549 Introductory Psychology students were tested for their understanding of key concepts of scientific reasoning in psychology. The test included items assessing students’ methodological, statistical, and probabilistic skills central to understanding scientific reasoning in psychology. The testing was performed in the 7th and 8th week of classes, which is in the middle of the semester, but well beyond the time in the semester when such material is initially presented. A 10 item multiple choice items test was developed based on the best of the items WSU psychology faculty members generated from assessments used in classes. Two examples of the items are below:

A correlation between self-esteem and annual income of -.75 would indicate that:

a. higher levels of self-esteem are associated with higher levels of annual income
b. lower levels of self-esteem are associated with lower levels of annual income

c. higher levels of annual income are associated with lower levels of self-esteem

d. it is impossible to predict annual income levels from knowledge of self-esteem levels
The key advantage of the experimental method is that it
a. allows for direct cause-effect conclusions
b. enables experimenters to study the mind.
c. is best suited for the investigation of abnormal behavior.
d. enables replication or empiricism.

The average score was 59% which, while low, was significantly above chance, \(t(356) = 33.30, p < .001 \), and higher than a group of 149 History 1700 (US History) students, \((M = 38\%) \), \(t(674) = 9.32, p < .001 \). Subsequent research will document changes from the beginning to the end of the semester in students’ knowledge of the probabilistic, statistical, and methodological foundations of scientific reasoning in psychology.

2. Critical thinking, cognitive learning, and individual or group problem solving

The second General Education goal examined was critical thinking, cognitive learning, and individual or group problem solving. In the summer 2011 assessment, Introductory Psychology students reported that their class often required use of the thinking strategies \((M = 3.95) \) and that they assessed themselves as having made between a moderate and substantial improvement in these thinking strategies \((M = 3.57) \). Students’ reported use of the strategies was positively related to their ratings of their improvement \((r = .63, p < .001) \), again suggesting that students believe that exercising these strategies is related to their improvement of such strategies in the class.

The 2008-2009 assessment addressed whether Introductory Psychology students used the findings from scientific psychology to revise their misconceptions about the discipline. Such a process it was argued required use of critical thinking, cognitive learning, and individual or group problem solving by students reflecting on, comparing, and contrasting the evidential support for their prior beliefs and scientific psychological claims, and monitoring the revision of the former by the latter. Evidence of such revisions suggests that students were not just superficially learning the material from class, but that the learned material was transforming how they think about the mind and behavior.

The assessment examined the status of Introductory Psychology students’ misconceptions about a variety of psychological phenomenon. It was borrowed from researchers who used the measure to analyze the impact of misconceptions on performance in Introductory Psychology classes (Thompson & Zamboanga, 2004). The 16-item Misconceptions Test requests that students rate statements on a 4-point scale, with options ranging from (1) Very sure it’s false to (4) Very sure it’s true. Some statements were false, meaning that they have been proven false by scientific psychology but there was reason to believe that they would be accepted by students (examples are below).

People’s recall of early childhood experiences tends to be clear and accurate.

Eyewitness memory for events is vivid and accurate, and resistant to misleading suggestion.
The eyes, ears, and other sensory organs provide an accurate experience of the world as it truly exists.

People feel better when they express their anger than when they try to control it.

Other statements were true, meaning that they were proven true by scientific psychology but there were reasons to believe that they would be rejected by students (examples are below).

Most children who are abused do not grow up to become abusive parents.

People will act in immoral, illegal, or dangerous ways if ordered to do so by a recognized authority.

The standards defining mental disorders have changed over the years.

Certain and accurate (e.g., consistent with scientific psychology) responses were given 4 points and certain and inaccurate responses received 1 point. Thompson and Zamboanga (2004) found that University of Nebraska Introductory Psychology students had a relatively low acceptance of scientific psychological claims (M = 2.38) when assessed on the first week of class. The average was significantly below an average of 2.50, suggesting that students had a stronger tendency to accept statements consistent with their prior beliefs than psychological sciences. By the end of the semester, students’ scores had increased significantly (M = 2.81), an average score significantly above 2.50, suggesting that students had a stronger tendency to accept statements consistent with psychological sciences than prior belief.

One hundred and fifty-eight WSU Introductory Psychology students were given the Misconceptions test during the 7th to 10th week of the spring 2009 semester. Their average score (M = 2.52) was significantly higher than the scores achieved by the Nebraska Introductory Psychology students at the beginning of the semester, $t(156) = 8.59$, $p < .001$, and significantly lower than the same students at end of the semester, $t(156) = 18.50$, $p < .0001$. The one shot assessment of WSU Introductory Psychology students in the middle of the semester shows that they are on the same trajectory as the University of Nebraska students in reversing a tendency to accept statements consistent with prior beliefs than psychological sciences. Future research will assess change in Introductory Psychology students’ performance on the Misconceptions test from the beginning and end of a semester.

3. Describe a social science approach to studying and understanding human behavior.

The third General Education goal examined was to describe a social science approach to studying and understanding human behavior. In the summer 2011 assessment, Introductory Psychology students reported that they were regularly exposed to “scientific psychology” as a social science approach to study human behavior ($M = 4.05$) and their understanding of it improved between
moderately and substantially ($M = 3.78$), with evidence again pointing to students believing that
greater exposure to scientific psychology in the class was related to them improving their
understanding ($r = 0.76, p < .0001$).

Two assessments tested students’ perceptions that they can describe scientific psychology as a
social science approach to studying and understanding human behavior. The first was the 2006-
2007 assessment previously reported of key concepts of scientific reasoning in psychology.
Students demonstrated (albeit moderate) knowledge of the probabilistic, statistical, and
methodological foundation of scientific psychology, suggesting that they could describe critical
aspects of scientific psychology.

Subsequently, in a 2008-2009 assessment Introductory Psychology students’ knowledge of
scientific psychology was assessed on a 25-item multiple-choice test. The test was developed by
Thompson and Zamboanga (2003, 2004), who created it based on recommendations from faculty
members of the central concepts, issues, or ideas that they believed students in an introductory
psychology course should know. The test items covered topics typically included in an introductory
course and had questions addressing theories and research based on a diversity of theoretical
approaches in psychology, including Biological, Behaviorist, Cognitive, Psychodynamic, Socio-
Cultural, and Humanistic.

Thompson and Zamboanga (2003, 2004) found that University of Nebraska Introductory
Psychology students had a relatively low understanding of scientific psychology ($M = 38\%$ correct)
when assessed on the first week of class. The average was significantly above an average of 20%,
suggesting that students had knowledge of scientific psychology that was significantly but not
substantially above chance responding. By the end of the semester, student’s performance on the
test had increased ($M = 76\%$).

One hundred and sixty eight WSU Introductory Psychology students were given the Multiple-
Choice test during the 7th to 10th week of the spring 2009 semester. Their average score ($M = 47\%$)
was significantly higher than the average score of Nebraska Introductory Psychology students at the
beginning of the semester, $t(167) = 6.53, p < .001$, and significantly lower than the same students at
the end of the semester, $t(167) = 27.62, p < .0001$. Again the one shot assessment of WSU
Introductory Psychology in the middle of the semester shows that they are on the same trajectory as
the University of Nebraska students in acquiring knowledge about scientific psychology. Future
research will again assess change in Introductory Psychology students’ performance on the multiple
choice test from the beginning to the end of a semester.

4. Describe basic assumptions about humans and their behaviors from a social science
perspective.

In a series of assessments in 2007-2008, 2008-2009, and 2010-2011 we explored Introductory
Psychology students’ understanding and adoption of the basic assumptions of scientific psychology.
It was argued that students must hold working assumptions of determinism and monism, and treat
human behavior as manipulable and controllable to understand research in scientific psychology. These assumptions deeply challenge students’ commitment to free will and dualism, which are characteristics that they think are intrinsic to human nature (Bloom, 2004; Pinker, 1988, 2002), and makes learning scientific psychology a challenge.

The assessment of Introductory Psychology students’ understanding and adoption of disciplinary assumptions of scientific psychology are based on the Psychology as Science (PAS) questionnaire (Friedrich, 1996). It is a reliable and valid assessment of students’ adoption (from 1= strongly disagree to 7= strongly agree, with 4 = neutral) of 15 statements tapping assumptions of scientific psychology, including the following:

- Psychological research can enable us to anticipate people’s behavior with a high degree of accuracy.
- Research conducted in controlled laboratory settings is essential for understanding everyday behavior.
- Our ability as humans to behave in any way we choose makes our attempts to predict behavior ineffective (reverse-scores)

A large (N = 420) assessment study of Weber State students in psychology courses across the curriculum revealed a weak agreement (overall average score of 5.18 on the 7-point scale) with assumptions that follow from treating psychology as a science. First year students (many of whom were in Introductory Psychology) weakly accepted the assumptions of scientific psychology (M = 5.01) which was significantly but only moderately lower than senior psychology students (M = 5.39). This small change in first year students’ acceptance of the assumptions of scientific psychology replicates other studies (Friedrich, 1996; Holmes & Beins, 2008).

In another assessment (Amsel et al., 2009), 227 Introductory Psychology students were found to score higher on the PAS when randomly assigned to answer the questionnaire from their Professor’s perspective (Professor M = 5.37) than their own (Self M = 5.01). The findings suggest that although Introductory Psychology students only weakly adopt the assumptions of scientific psychology, it is not because they do not understand the assumptions. They readily recognize that their professors adopt the assumption more strongly than they do.

In a more recent study (Amsel et al., submitted), 100 Introductory Psychology students’ were given the PAS in both the Self and Professor Condition at the beginning (Time 1) and the end (Time 2) of the semester. The results demonstrated small but significant changes in both PAS Self and Professor Conditions over the semester (see Figure 1).
Figure 1: PAS scores by Condition and Time among Introductory Psychology Students.

The change from Time 1 to Time 2 in Introductory Psychology students’ PAS Self scores was related to their Time 2 PAS Professor scores ($r = .61, p < .001$), independently of Time 1 Professor scores, demographic variables, and academic variables. Moreover, students’ ability to adopt their professors’ beliefs was related to their academic success as measured by their final grade in the course. A stepwise multiple regression found that only Time 1 PAS Prof scores predicted students’ Introductory Psychology final course grade ($\beta = .27, p < .01$).

The results of the study demonstrate that students’ adoption of assumptions of scientific psychology increases over an Introductory Psychology class which parallels increases in the students’ perception of their professors’ adoption of the same assumptions. The parallel reflects a deep connection between the strength with which students assume professors adopt of the assumptions and their own acceptance of them. That is, the extent to which students overcome their skepticism and adopt the assumptions of scientific psychology appears to be related to their ability to entertain the extent to which their professors adopt them. Additionally, students’ recognizing professors as adopting these assumptions promotes their academic success in Introductory Psychology.

5. Explain the interactions between individuals and their sociocultural and/or natural environments.

The fifth General Education goal examined was to explain the interactions between individuals and their sociocultural and/or natural environments. In the summer 2011 assessment, Introductory
Psychology students reported that they were regularly exposed to psychological explanations of human behavior which highlight biological, psychological and social interactions ($M = 4.32$) and their understanding of them improved substantially ($M = 4.00$), with evidence again pointing to students believing that greater exposure to interactive psychological explanations in the class was related to them improving their understanding of them ($r = 0.83, p < .0001$).

Interactive scientific psychological explanations of most phenomena were described as more sophisticated than students own spontaneous explanations which involve single variables or simple additive effects of multiple variables. For example, as previously noted, students tend to enter Introductory Psychology classes with a naïve realism view of perception, which holds that perception of the external world is direct, without interactions between factors. However scientific psychology accounts for perceptual phenomena with complex interactions between biological, psychology and social process. Only 16% of the students were certain that a statement reflecting naïve realistic view of perception was false (e.g., *The eyes, ears, and other sensory organs provide an accurate experience of the world as it truly exists*). However 54% of students were somewhat certain that it is false, suggesting that a majority of students recognize the value of interactive explanations. However, as the assessment was made midterm, students may still be in a process of revising their most simplistic beliefs.

Similarly, students enter Introductory Psychology with simplistic understanding of controlling and the behavior of children. They advocate using standards which evoke both rewards and punishers. However, scientific psychology explains the control of children’s behavior as a complex process, with important differences between mechanisms of reinforcement and punishment. Again only 12% of the students were certain that a statement reflecting a simplistic view of the control of children’s behavior was false (e.g., *It doesn’t matter whether you use rewards or punishments to manage a child’s behavior, as long as your standards are consistent*). Thirty-seven percent of students were somewhat certain that it is false, suggesting that a total of 49% of students recognize the value of interactive explanations.

These findings from the Misconception test suggest that Introductory Psychology students were learning to revise simplistic in favor of complex explanations. The complex explanations highlight interactive processes in understanding natural and socio-cultural phenomenon in psychology. Further research will explore the changes from the beginning to the end of the semester in students’ tendency to give interactive explanations of psychological phenomenon.

7. How has this assessment information been used to improve student learning?

The research results have motivated broader discussions in the department about how best to teach Introductory Psychology and assess students’ learning. The discussions have focused on how to best promote students’ understanding of the content, nature, and assumptions of scientific psychology. Also, assessments used in Introductory Psychology have expanded to include opportunities for students to run portal-based simulations and other activities for them to better understand the explanations and data collection techniques of scientific psychology.
GENERAL EDUCATION COURSE APPROVAL PAGE

Approval Sequence:

__
Department Chair/Date

__
Dean of College/Date

__
University Curriculum Committee/Date

Passed by Faculty Senate_____________________________Date

Effective Date_____________________________
Introductory Psychology
Psy 1010

Instructor: Eric Amsel
Email: Eamsel@weber.edu
Phone: x6658
Office Hours: TTH just after class or by appointment
Office: SS 370
WebSite: http://weber.edu/eamsel

Course Objectives: The course will explore classic and contemporary theories of and research in scientific psychology. The specific objectives are:

a. To learn about ‘human nature’ from the perspective of scientific psychology.

b. To understand the multiple scientific perspectives (behavioral, biological, cognitive, socio-cultural, evolutionary) of human behavior within scientific psychology and how each of these differ from our ‘everyday’ theory.

c. To appreciate that all behavior is the result of a complex interaction between genetic, biological, cognitive, environmental, and social-cultural factors.

d. To learn about the methods, procedures, and techniques that scientific psychologists use in academic studies and professional practice.

General Plan: In the first week of classes we will examine everyday explanations of behavior. The structure of these ‘folk’ explanations will be explored and the 4 underlying assumptions will be identified. These four assumptions include the *existence of mental states, the power of awareness, the centrality of rationality, and the accuracy of perception.* These assumptions will be the focus of attention over the next seven weeks of the semester as we consider Behaviorism and Learning (which challenges the power of awareness), Biological Psychology (which denies the existence of mental states), Sensation and Perception (which makes apparent the inaccuracy of perception) and Cognitive Psychology (which demonstrates human irrationality). During the last 6 weeks of classes we adopt a new tact in understanding human beings. As an alternative to everyday psychological explanations, we will examine human behavior as a product of interactions between distinct forces. These forces include environmental, biological, cognitive, genetic (evolutionary psychology & behavioral genetics), socio-cultural, and genetic influences on behavior. These forces and their interactions will be examined in the contexts of Social Psychology, Motivation, Development, Personality, Psychopathology, and Treatment.

Grading: There will be four Exams, to be taken in the Social Sciences Testing Center. Each exam will include multiple choice, short answer, and essay questions based on the assigned textbook chapters, class discussions, written assignments, computer assignments, and lectures. A study guide will be available and an exam review will be held before each exam. Each exam will cover only material from approximately 3-4 textbook chapters. In addition, there will be four Written Assignments. Each of the assignments will involve 3- to 5-paged written (typed, doubled-spaced) answers to general questions. These written assignments will be distributed to students approximately a week before they are due. Students will be expected to complete 13 Quiz Assignments available on Chi Tester. These quizzes can be taken multiple times during the period
that they are available until students score 100% on the quiz. You will be expected to take part in up to 10 credits of research experiences (Research Participation), by either being a research participate in, observer of, or reviewer of research in scientific psychology. Finally, Class Attendance and Participation in class will also be factored into your grade.

Grades: The weighting of each assignment is described below:

- Exams (4) ... 60%
 - Each exam 15%
- Written Assignments 20%
- Folk Psychology 5%
- Perception and Knowledge 5%
- Gambling 5%
- Dear Abby 5%
- Quiz Assignments 10%
- Research Participation 5%
- Class Participation & Attendance 5%

Class Policies: For a review of class policies (including policies dealing with academic dishonesty, students with disabilities, late papers, missing assignments, go to the class web site.)
<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/24</td>
<td>Lecture 1</td>
<td>8/26</td>
<td>Lecture 2</td>
<td>Quiz 1 end</td>
</tr>
<tr>
<td></td>
<td>Syllabus Quiz 1</td>
<td>Assign 1 dist’b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/31</td>
<td>Lecture 3</td>
<td>9/2</td>
<td>Lectures 4 and 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assign 1 due</td>
<td></td>
</tr>
<tr>
<td>9/6 Labor Day</td>
<td>9/7</td>
<td>9/9</td>
<td>Lectures 7-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/14</td>
<td>Review Exam 1</td>
<td>Exam1 begins</td>
<td>Quiz 2-4 end</td>
<td>9/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quiz 2-4 end</td>
<td></td>
<td>Lectures 9 & 10</td>
</tr>
<tr>
<td>9/21</td>
<td>Lecture 11</td>
<td>9/23</td>
<td>Lecture 12</td>
<td></td>
</tr>
<tr>
<td>9/28</td>
<td>Lectures 13-14</td>
<td>9/30</td>
<td>Lecture 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assign 2 Dist’b</td>
<td></td>
</tr>
<tr>
<td>10/5</td>
<td>Lecture 16</td>
<td>10/7</td>
<td>Review Exam 2</td>
<td>Exam 2 Begins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assign 2 Due</td>
<td>Quiz 5 & 6 end</td>
</tr>
<tr>
<td>10/12</td>
<td>Lectures 17-18</td>
<td>10/14</td>
<td>Lecture 19</td>
<td>10/15 Fall Break</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10/14 Lecture 19</td>
<td></td>
</tr>
<tr>
<td>10/19</td>
<td>Lecture 20a</td>
<td>10/21</td>
<td>Lecture 20b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assign 3 Dist’b</td>
<td></td>
</tr>
<tr>
<td>10/26</td>
<td>Lecture 21</td>
<td>10/28</td>
<td>Lectures 22-23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assign 3 Due</td>
<td></td>
</tr>
<tr>
<td>11/2</td>
<td>Review Exam 3</td>
<td>Quiz 7 - 9 end</td>
<td>11/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exam 3 Begins</td>
<td>Lectures 24-25</td>
<td></td>
</tr>
<tr>
<td>11/9</td>
<td>Lecture 26</td>
<td>11/11</td>
<td>Lecture 27</td>
<td></td>
</tr>
<tr>
<td>11/16</td>
<td>Lecture 28</td>
<td>11/18</td>
<td>Lecture 29</td>
<td></td>
</tr>
<tr>
<td>11/23</td>
<td>Lectures 30-31</td>
<td>11/25 Thanksgiving</td>
<td>11/26 Thanksgiving</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assign 4 Dist’b</td>
<td>Thanksgiving</td>
<td>Thanksgiving</td>
<td></td>
</tr>
<tr>
<td>11/30</td>
<td>Lecture 32-33</td>
<td>12/2</td>
<td>Review Final Assign 4 Due</td>
<td>Quiz 10-13 end</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exam 4 begins</td>
<td></td>
</tr>
</tbody>
</table>
Course Policies
(Consider this document an extension of the syllabus)

Academic Dishonesty: I encourage students to work and study together whenever possible. However, students must hand in their own work. If you are caught engaged in academically dishonest behavior in this class, you risk failing the course and being subject to academic discipline including the imposition of university sanctions. I will consider each case of academic dishonesty on a case-by-case basis and will impose the most severe penalties for those whose dishonesty was intended to be deceptive. Whatever the severity, all cases of academic dishonesty will be reported. A description of the forms of academic dishonesty and possible sanctions may be found in the Student Code. The following definition and descriptions are taken from the Student Code (PPM 6-22 and go to IV D2):

...As members of the academic community, students shall:

1. Maintain academic standards including Institutional, School/Department/Program, and individual course standards.

2. Maintain academic ethics and honesty; to this end, the following activities are specifically prohibited:

 a. Cheating, which includes but is not limited to:

 1) Copying from another student's test paper.
 2) Using materials during a test not authorized by the person giving the test.
 3) Collaborating with any other person during a test without authority.
 4) Knowingly obtaining, using, buying, selling, transporting, or soliciting in whole or in part the contents of any test, without authorization of the appropriate official.
 5) Bribing any other person to obtain any test.
 6) Soliciting or receiving unauthorized information about any test.
 7) Substituting for another student or permitting any other person to substitute for oneself to take a test.

 b. Plagiarism, which is the unacknowledged (uncited) use of any other person or group's ideas or work. This includes purchased or borrowed papers;

 c. Collusion, which is the unauthorized collaboration with another person in preparing work offered for credit;

 d. Falsification, which is the intentional and unauthorized altering or inventing of any information or citation in an academic exercise, activity, or record-keeping process;

 e. Giving, selling or receiving unauthorized course or test information;

 f. Using any unauthorized resource or aid in the preparation or completion of any course work, exercise or activity;
g. Infringing on the copyright law of the United States which prohibits the making
reproductions of copyrighted material except under certain specified conditions

Attendance: Class attendance is required and will be monitored. If a student is judged to be
absent for at least 25% of the classes, the student will be counseled to withdraw from the course.

Completing all Work: All assignments (papers, projects, quizzes, simulations, etc.) which receive
a specific grade must be completed in order for students to pass the course. **Students will receive a
grade of I (incomplete) if any work is missing when the final grades are computed.** The grade
of I will turn into a UW if the work is not completed in a timely fashion.

Disabilities: Any student requiring accommodations or services due to a disability must contact
Services for Students with Disabilities (SSD) in room 181 of the Student Services Center. SSD can
also arrange to provide course material (including the syllabus) in alternative formats if necessary.

Final Grades: The full range of grades (A, A-, B+, B, B-, C+, C, C-, etc.) will be applied to
written assignments and exams. Final grades will also be based on cumulative percentages in the
following manner:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93-100</td>
</tr>
<tr>
<td>A-</td>
<td>90-92</td>
</tr>
<tr>
<td>B+</td>
<td>88-89</td>
</tr>
<tr>
<td>B</td>
<td>83-87</td>
</tr>
<tr>
<td>B-</td>
<td>80-82</td>
</tr>
<tr>
<td>C+</td>
<td>78-79</td>
</tr>
<tr>
<td>C</td>
<td>77-73</td>
</tr>
<tr>
<td>C-</td>
<td>70-72</td>
</tr>
<tr>
<td>D+</td>
<td>68-69</td>
</tr>
<tr>
<td>D</td>
<td>63-67</td>
</tr>
<tr>
<td>D-</td>
<td>60-62</td>
</tr>
<tr>
<td>E</td>
<td>00-59</td>
</tr>
</tbody>
</table>

Class(less) Behavior: If you arrive late to class, please wait at the door until I invite you to sit
down. If you must leave early on a particular occasion, please let me know beforehand. Do not
make a habit of arriving late or leaving early as many (including me) find it very distracting. The
following behaviors are rude when they take place during class time: a) holding private
conversations, b) sleeping, c) reading other material, or d) doing other work. **Students repeatedly
engaging in rude behavior will be counseled to drop the course.**

Late Assignments: Assignments are due on a particular day and at a particular time. If there is not
designated time, assume that time is 5:00 pm on the due date. An assignment handed in later than
on the assigned time and date will be considered late and penalized **2 percentage points for each
late day** (including weekends and holidays, etc.). A student can request an extension without
penalty for any assignment (except for computer assignments), but such a request must be received
prior to the due date. My policy is to grant an extension with **no questions asked** for the **first
request.** But, you must OK it with me first by signing a contract specifying the date it will be
handed in (download contract). A late assignment must be handed in by 1 calendar week, with the
signed contract attached to the assignment. If the assignment is later than the contracted date, the
penalty will be assessed from the **original due date.** Subsequent requests to hand an assignment in
late will require evidence of a medical problem, personal emergency, or some other excuse. It is up
to me and me alone as to whether or not an excuse is acceptable. **A late paper (whether
authorized or not) cannot be rewritten.**
Make-up Exams: There will be no make-up exams. You must make arrangements to write exams on day(s) that they are given, or have permission from me to take them on an alternative date.
Permission will never be given after the scheduled date of the exam for a student to take a late exam.

Rewriting Policy: If you are unsatisfied with your grade for written assignments or exams, there is a rewrite policy for you to not only improve your grade, but also learn why you made mistakes.

1. Rewriting written assignments. I will grant a request to rewrite a written assignment during the semester. If you are dissatisfied with a grade on an assignment and wish to improve your understanding of it, feel free to take advantage of this option. Correctly rewritten assignments will improve your original grade, but not substantially. Also, the option to rewrite written assignment is available only for one calendar week following the return of the assignment in class. Late assignment rewrites will not be accepted!

2. Rewriting exams. Students will be granted the opportunity to improve on poor exam grades (for all but the final exam) by reviewing the multiple-choice section, and, for each mistaken question, writing a short account of why the wrong option was selected. Each corrected question will be worth about approximately 1/3 of a final percentage point on your exam grade. The option to rewrite exams is available only for one calendar week following the return of the exam. Late exam rewrites will not be accepted!

Schedule: All dates and topics on the schedule should be considered tentative. I am committed to following the schedule but there is no guarantee that I will. Altering the schedule may also mean changing the nature or timing of assignments.